

 Independent consultant

 Available for consulting

 In-house workshops

 Cost-Based Optimizer

 Performance By Design

 Performance Troubleshooting

 Oracle ACE Director

 Member of OakTable Network

 Optimizer Basics – Key Concepts

 Proactive: Performance by design

 Reactive: Troubleshooting

 Three main questions you should ask when
looking for an efficient execution plan:

 How much data? How many rows / volume?

 How scattered / clustered is the data?

 Caching?

=> Know your data!

 Why are these questions so important?

 Two main strategies:

 One “Big Job”
=> How much data, volume?

 Few/many “Small Jobs”
=> How many times / rows?
=> Effort per iteration? Clustering / Caching

 Optimizer’s cost estimate is based on:

 How much data? How many rows / volume?

 (partially)

 (Caching?) Not at all

 Single table cardinality

 Join cardinality

 Filter subquery / Aggregation cardinality

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

B
ase C

ard
in

ality

F
iltered

 C
ard

in
ality

 /
 F

ilter R
atio

 Optimizer challenges

 Skewed column value distribution

 Gaps / clustered values

 Correlated column values

 Complex predicates and expressions

 Bind variables

Demo!

optimizer_basics_single_table_cardinality_testcase.sql

 Impact limited to a “single table”

 Influences the favored
(Full Table Scan, Index Access etc.)

 Influences the and
(NESTED LOOP, HASH, MERGE)

=> An incorrect single table cardinality
potentially screws up whole !

 Oracle joins exactly row sources at a time

 If more than two row sources need to be joined,
 join operations are required

 Many different possible (factorial!)

 Tree shape of execution plan

 Challenges

 Getting the right!

 A join can mean anything between and a
 product

 Getting the right

T1 T2

T1, T2

1,000 rows 1,000 rows

0 rows

1,000,000 rows

 Getting the right

T1 T2

T1, T2

Join cardinality =
Cardinality T1 *
Cardinality T2 *
Join selectivity

 Challenges

 Semi Joins (EXISTS (), = ANY())

 Anti Joins (NOT EXISTS (), <> ALL())

 Non-Equi Joins (Range, Unequal etc.)

 Even for the most common form of a join
- the –
there are several challenges

 Non-uniform join column value distribution

 Partially overlapping join columns

 Correlated column values

 Expressions

 Complex join expressions (multiple AND, OR)

Demo!

optimizer_basics_join_cardinality_testcase.sql

 Influences the and
(NESTED LOOP, HASH, MERGE)

=> An incorrect join cardinality/selectivity
potentially screws up whole !

 Data is organized in blocks

 Many rows can fit into a single block

 According to a specific data can
be either across many different blocks
or in the same or few blocks

 Does make a tremendous difference in terms of
efficiency of a “Small Job”

1,000 rows => visit 1,000 table blocks: 1,000 * 5ms = 5 s

1,000 rows => visit 10 table blocks: 10 * 5ms = 50 ms

 Scattered data means potentially many more
blocks to compete for the Buffer Cache for the
same number of rows

 => Caching!

 Scattered data can result in increased

 physical

 write (Log Writer, DB Writer)

 Most OLTP data has a clustering

 Data arriving is usually
clustered together in a heap organized table

 Depends on the organization

 for example can influence this
clustering even for heap organized tables

 Clustering of data can be influenced by
 implementation

 Physical design matters

 Segment space management (MSSM / ASSM)

 Partitioning

 Index/Hash Cluster

 Index Organized Tables (IOT)

 Index design / multi-column composite indexes

 There is a reason why the Oracle internal data
dictionary uses all over the place

No table access => only index blocks are visited!

 There is only a single measure of clustering in
Oracle:
The

 The index clustering factor is represented by a
 value

 The logic measuring the clustering factor by
default does cater for data clustered across

 blocks (ASSM!)

 Challenges

 Getting the right

 There are various reasons why the index clustering
factor measured by Oracle might not be

 Multiple freelists / freelist groups (MSSM)

 ASSM

 Partitioning

 SHRINK SPACE effects

Re-visiting the same recent table blocks

 Challenges

 There is no clustering measurement

 The optimizer therefore doesn’t really have a clue
about the

 You may need to influence the optimizer’s decisions
if you know about this clustering

Demo!

optimizer_basics_inter_table_clustering_testcase.sql

 The optimizer’s model by default doesn’t
consider caching of data

 Every I/O is assumed to be

 But there is a huge difference between
 (measured in microseconds) and
 (measured in milliseconds)

 You might have knowledge of particular
application data that is and usually stays
in the Buffer Cache

 Therefore certain queries against this “hot”
data can be based on that

 The optimizer doesn’t know about this. You
may need to the optimizer’s decisions

 Oracle obviously played with the idea of
introducing an caching component
into the cost calculation in 9i and 10g

 You can see this from the undocumented
parameters and

 as well as the columns
 and

 in the data
dictionary

 It is important to point out that even
 is not “free”

 So even by putting all objects entirely in the
Buffer Cache execution plans may
still lead to poor performance

 logical I/O, in particular on “hot
blocks”, can lead to and

 and determine whether
the or strategy should be
preferred

 If the optimizer gets these estimates right, the
resulting will be within
the of the given access paths

 How to apply these concepts, where to go from
here?

 Read Jonathan Lewis’ article
“Designing Efficient SQL” at Red
Gate’s “Simple Talk”

Probably the best coverage of the
concepts outlined here including
clustering and caching

http://www.simple-talk.com/sql/performance/designing-efficient-sql-a-visual-approach/

 How to apply these concepts, where to go from
here?

 Read Jonathan Lewis’ article
“Designing Efficient SQL” at Red
Gate’s “Simple Talk”

Probably the best coverage of the
concepts outlined here including
clustering and caching

http://www.simple-talk.com/sql/performance/designing-efficient-sql-a-visual-approach/

 How to apply these concepts, where to go from
here?

 Read one of Tom Kyte’s books to
learn more about the pro’s and con’s
of clusters and index organized
tables

 How to apply these concepts, where to go from
here?

 Read one of Tom Kyte’s books to
learn more about the pro’s and con’s
of clusters and index organized
tables

 How to apply these concepts, where to go from
here?

 Learn how to read, interpret and
understand Oracle execution plans
=> Chapter 6 of “Troubleshooting
Oracle Performance” by Christian
Antognini

 This knowledge is required in order
to compare your understanding of
the query to the optimizer’s
understanding

 How to apply these concepts, where to go from
here?

 Learn how to read, interpret and
understand Oracle execution plans
=> Chapter 6 of “Troubleshooting
Oracle Performance” by Christian
Antognini

 This knowledge is required in order
to compare your understanding of
the query to the optimizer’s
understanding

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 If you want a more formal approach

 Read “SQL Tuning” by Dan Tow

 Teaches a formal approach how to
design and visualize an execution plan

 Focuses on “robust” execution plans
in an OLTP environment

 The formal approach doesn’t take into
account clustering and caching,
however it is mentioned in the book at
some places

 If you want a more formal approach

 Read “SQL Tuning” by Dan Tow

 Teaches a formal approach how to
design and visualize an execution plan

 Focuses on “robust” execution plans
in an OLTP environment

 The formal approach doesn’t take into
account clustering and caching,
however it is mentioned in the book at
some places

 If you want a more formal approach

 Read “Relational Database Index
Design and the Optimizers” by
Tapio Lahdenmäki and Michael
Leach

 Focuses on index design

 Provides simple and more advanced
formulas allowing to predict the
efficiency of queries and indexes

 Covers clustering and caching

 If you want a more formal approach

 Read “Relational Database Index
Design and the Optimizers” by
Tapio Lahdenmäki and Michael
Leach

 Focuses on index design

 Provides simple and more advanced
formulas allowing to predict the
efficiency of queries and indexes

 Covers clustering and caching

 For application developers

 Read “Use the Index, Luke” by
Markus Winand

 Focuses on index design

 Provides a lot of examples how to
design efficient database access using
different front-end languages (Java,
Perl, PHP, etc.)

 Also available as free eBook

 Cross database (Oracle DB2,
MySQL…)

http://use-the-index-luke.com/

 For application developers

 Read “Use the Index, Luke” by
Markus Winand

 Focuses on index design

 Provides a lot of examples how to
design efficient database access using
different front-end languages (Java,
Perl, PHP, etc.)

 Also available as free eBook

 Cross database (Oracle DB2,
MySQL…)

http://use-the-index-luke.com/

 If you want dive into the details of the Cost-
Based Optimizer

 Read “Cost-Based Oracle:
Fundamentals” by Jonathan Lewis

 Almost six years old

 Still the best book about the Oracle
optimizer

 Covers the key concepts mentioned
here in great detail

 If you want dive into the details of the Cost-
Based Optimizer

 Read “Cost-Based Oracle:
Fundamentals” by Jonathan Lewis

 Almost six years old

 Still the best book about the Oracle
optimizer

 Covers the key concepts mentioned
here in great detail

Q & A

